Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
Applied Sciences-Basel ; 13(10), 2023.
Artículo en Inglés | Web of Science | ID: covidwho-20243645

RESUMEN

A mortality prediction model can be a great tool to assist physicians in decision making in the intensive care unit (ICU) in order to ensure optimal allocation of ICU resources according to the patient's health conditions. The entire world witnessed a severe ICU patient capacity crisis a few years ago during the COVID-19 pandemic. Various widely utilized machine learning (ML) models in this research field can provide poor performance due to a lack of proper feature selection. Despite the fact that nature-based algorithms in other sectors perform well for feature selection, no comparative study on the performance of nature-based algorithms in feature selection has been conducted in the ICU mortality prediction field. Therefore, in this research, a comparison of the performance of ML models with and without feature selection was performed. In addition, explainable artificial intelligence (AI) was used to examine the contribution of features to the decision-making process. Explainable AI focuses on establishing transparency and traceability for statistical black-box machine learning techniques. Explainable AI is essential in the medical industry to foster public confidence and trust in machine learning model predictions. Three nature-based algorithms, namely the flower pollination algorithm (FPA), particle swarm algorithm (PSO), and genetic algorithm (GA), were used in this study. For the classification job, the most widely used and diversified classifiers from the literature were used, including logistic regression (LR), decision tree (DT) classifier, the gradient boosting (GB) algorithm, and the random forest (RF) algorithm. The Medical Information Mart for Intensive Care III (MIMIC-III) dataset was used to collect data on heart failure patients. On the MIMIC-III dataset, it was discovered that feature selection significantly improved the performance of the described ML models. Without applying any feature selection process on the MIMIC-III heart failure patient dataset, the accuracy of the four mentioned ML models, namely LR, DT, RF, and GB was 69.9%, 82.5%, 90.6%, and 91.0%, respectively, whereas with feature selection in combination with the FPA, the accuracy increased to 71.6%, 84.8%, 92.8%, and 91.1%, respectively, for the same dataset. Again, the FPA showed the highest area under the receiver operating characteristic (AUROC) value of 83.0% with the RF algorithm among all other algorithms utilized in this study. Thus, it can be concluded that the use of feature selection with FPA has a profound impact on the outcome of ML models. Shapley additive explanation (SHAP) was used in this study to interpret the ML models. SHAP was used in this study because it offers mathematical assurances for the precision and consistency of explanations. It is trustworthy and suitable for both local and global explanations. It was found that the features that were selected by SHAP as most important were also most common with the features selected by the FPA. Therefore, we hope that this study will help physicians to predict ICU mortality for heart failure patients with a limited number of features and with high accuracy.

2.
14th International Conference on Brain Informatics, BI 2021 ; 12960 LNAI:411-422, 2021.
Artículo en Inglés | Scopus | ID: covidwho-1446075

RESUMEN

A handheld device (such as a smartphone/wearable) can be used for tracking and delivering navigation within a building using a wireless interface (such as WiFi or Bluetooth Low Energy), in situations when a traditional navigation system (such as a global positioning system) is unable to function effectively. In this paper, we present an indoor navigation system based on a combination of wall-mounted wireless sensors, a mobile health application (mHealth app), and WiFi/Bluetooth beacons. Such a system can be used to track and trace people with neurological disorders, such as Alzheimer’s disease (AD) patients, throughout the hospital complex. The Contact tracing is accomplished by using Bluetooth low-energy beacons to detect and monitor the possibilities of those who have been exposed to communicable diseases such as COVID-19. The communication flow between the mHealth app and the cloud-based framework is explained elaborately in the paper. The system provides a real-time remote monitoring system for primary medical care in cases where relatives of Alzheimer’s patients and doctors are having complications that may demand medical care or hospitalization. The proposed indoor navigation system has been found to be useful in assisting patients with Alzheimer’s disease (AD) while in the hospital building. © 2021, Springer Nature Switzerland AG.

3.
Lecture Notes on Data Engineering and Communications Technologies ; 60:83-97, 2021.
Artículo en Inglés | Scopus | ID: covidwho-986462

RESUMEN

Advancement in robotic technology triggered its usability in the next generation healthcare system. Healthcare robots are expected to assist clinicians and healthcare professionals at all settings by monitoring patient’s physiological conditions in real time, facilitating advanced intervention such as robotic surgery, supporting patient care at the hospital and home, dispensing medication, assisting patients with cognition challenges and disabilities, keeping company to geriatric and physically/mentally challenged patients and hospital building management such as disinfecting places. Thus, the robotic agent can enhance healthcare experiences by reducing patient care work and strenuous/repetitive manual tasks. The robotic applications can also be elongated in supporting the healthcare system for the management of pandemics like novel coronavirus (COVID-19) infection and upcoming pandemics. Such applications include collecting the sample from a patient for screening, disinfecting the hospital, supply logistics, and food to the infected patient, collect physiological conditions. This chapter aims to provide an overview of various types of assistive robots employed for healthcare services especially in fighting pandemic and natural disasters. © 2021, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA